УТВЕРЖДАЮ

Главный инженер УП БМС						
		В. С. Сякерский				
"	,,	2004 г.				

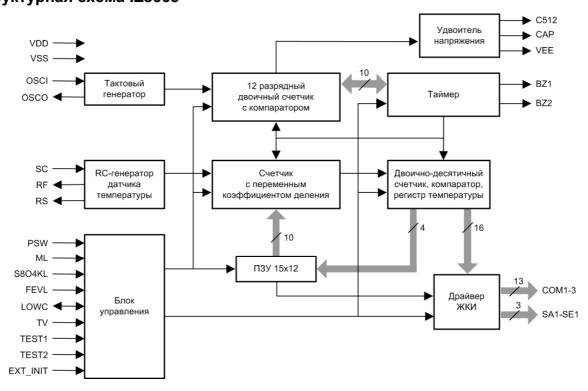
МИКРОСХЕМЫ ИНТЕГРАЛЬНЫЕ IZ8005

Техническая спецификация

Лист утверждения ТС IZ8005-ЛУ

Начальник отделения «МП»					
	_ О. С. Вайнилович				
	_ 2004 г.				
Главный констру	уктор ОКР "Доктор-5"				
	_ Ю. А. Альшевский				
	_ 2004 г.				

ИС медицинского термометра IZ8005


IZ8005 — цифровая КМОП микросхема, предназначенная для применения в электронные медицинских термометрах. Она позволяет измерять температуру тела в диапазоне от 32.00 до 43.00°С, имеет встроенный драйвер ЖКИ, средства самотестирования, авто-выключение, память для предыдущего измеренного значения температуры, может подавать звуковой сигнал и указывать на разряд элемента питания. В качестве датчика температуры, микросхема использует внешний терморезистор типа 503ЕТ ф. "Semitec".

Область применения микросхемы IZ8005 – компактные медицинские электронные термометры.

Функции и особенности

- Измерение температуры тела в диапазоне 32,00 ... 43,00°C
- Точность измерения: ±0.1°C
- Разрешение: 0,01°С
- Датчик температуры терморезистор типа 503ET
- Функционирование от одного 1.5В элемента питания
- Встроенный драйвер 4-ех разрядного ЖКИ с тройным мультиплексированием
- Встроенные средства самодиагностики
- Отображение предыдущего измеренного значения температуры
- Индикация разряда батарейки
- Звуковой сигнал
- Функция "Высокая температура"
- Индикация максимальной температуры
- Управление одной кнопкой
- Авто-выключение через 8 минут 40 секунд

Структурная схема IZ8005

Диапазон рабочих температур IZ8005

Диапазон рабочих температур микросхемы IZ8005: $T_A = -20 ... + 75 °C$.

Предельный режим IZ8005

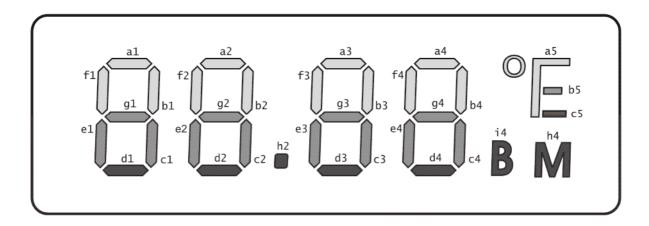
Предельные и предельно допустимые режимы работы микросхемы IZ8005 приведены в таблице

Наименование	Обозначение	Норма					
параметра, единица измерения		Предельно-	допустимая	Предельная			
neme permin		не менее	не более	не менее	не более		
Напряжение питания, В	V_{DD}	1.2	1.8	0	2.0		
Входное напряжение, В	V _{IN}	V _{SS}	V_{DD}	V _{SS} - 0.5	V _{DD} + 0.5		

При воздействии предельного режима работоспособность микросхем не гарантируется. После снятия предельного режима гарантируется работоспособность в предельно допустимом режиме.

Электрические параметры IZ8005

Электрические параметры микросхемы IZ8005 при температуре $T_A = -20...+75^{\circ}$ С приведены в таблице


Наименование параметра,	Обозначение	Режим измерения	Норма		
единица измерения		•	не менее	не более	
Напряжение питания, В	V_{DD}	_	1.2	1.8	
Динамический ток потребления в режиме измерения температуры, мкА	I _{DD1} 1)	V _{DD} = 1.5B	_	100	
Динамический ток потребления в режиме индикации, мкА	I _{DD2}	V _{DD} = 1.5B, без нагрузки, R _{OSC} = 820кОм	_	8.0	
Статический ток потребления, мкА	I _{STB}	V _{DD} = 1.5B, без нагрузки	_	1.0	
Выходной ток выводов	I _{OH}	$V_{DD} = 1.3B, V_{OUT} = 0.8B,$	300	_	
пьезоэлемента, мкА	I _{OL}	$V_{DD} = 1.3B, V_{OUT} = 0.5B,$	300	_	
Частота тактового генератора, кГц	Fosc	$V_{DD} = 1.5B, R_{OSC} = 820 \kappa O M$	25.6	38.4	
Точность измерения температуры в диапазоне 35 39°C, °C	R°C ²⁾	V _{DD} = 1.30B – 1.65B	-0.1	0.1	

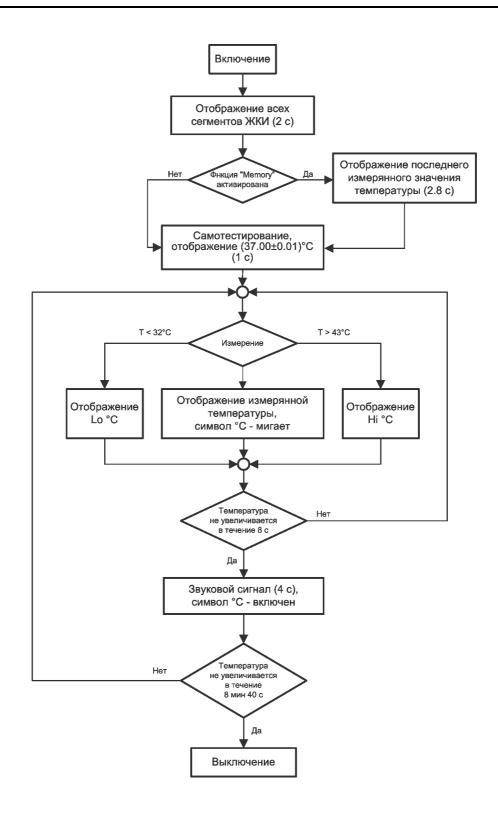
- 1) Измеряемая температура не более 43.0°C
- 2) Типовая точность измерения вне указанного диапазона температур не хуже ± 0.15 °C

Формат ЖКИ IZ8005

Микросхема IZ8005 использует четырехразрядное ЖКИ с тройным мультиплексированием. Кроме цифровых разрядов и десятичной точки, ЖКИ имеет информационные метки – «°С», «М», «В». Рабочее напряжение ЖКИ – 3В.

Формат ЖКИ, приведен на рисунке, распределение сегментов и мультиплексных электродов ЖКИ – в таблице.

	SA1	SA2	SA3	SB1	SB2	SB3	SC1	SC2	SC3	SD1	SD2	SD3	SE1
COM1	f1	a1	b1	f2	a2	b2	f3	a3	b3	f4	a4	b4	a5
COM2	e1	g1	c1	e2	g2	c2	e3	g3	с3	e4	g4	с4	b5
СОМЗ	-	d1	-	-	d2	h2	-	d3	-	i4	d4	h4	c 5


Алгоритм работы термометра

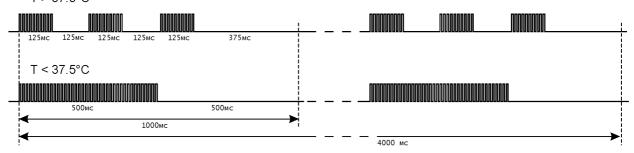
Алгоритм работы микросхемы IZ8005 показан на диаграмме.

Включение и выключение термометра выполняется кратковременным подключением вывода PSW через внешнюю кнопку к напряжению +1.5В. В момент нажатия, ИС генерирует одиночный звук, длительностью около 1/8 секунды.

Сразу после включения термометра, в течение 2 секунд, выполняется тест ЖКИ – включаются все имеющиеся сегменты. Затем, если вывод МL микросхемы подключен к +1.5В, т.е. активирована функция «Память», на ЖКИ выдается последнее измеренное значение температуры, хранящееся в памяти ИС. Оно отображается на ЖКИ в течении 3 секунд.

Затем, всегда выполняется самотестирование термометра. При нормальной работе всего устройства, на ЖКИ появляется значение ($37,00\pm0,01$)°С. Результат теста отображается в течении 1 секунды. После этого, термометр начинает измерять текущую температуру один раз в секунду и отображать значение на ЖКИ. При этом, сегмент «°С» мигает с частотой 1Гц.

Термометр всегда показывает максимальную измеренную температуру — т.н. режим «максимометра». Если измерянная температура меньше 32°C, то на ЖКИ отображаются символы « Lo°C », если больше 43°C — отображается « Hi°C».

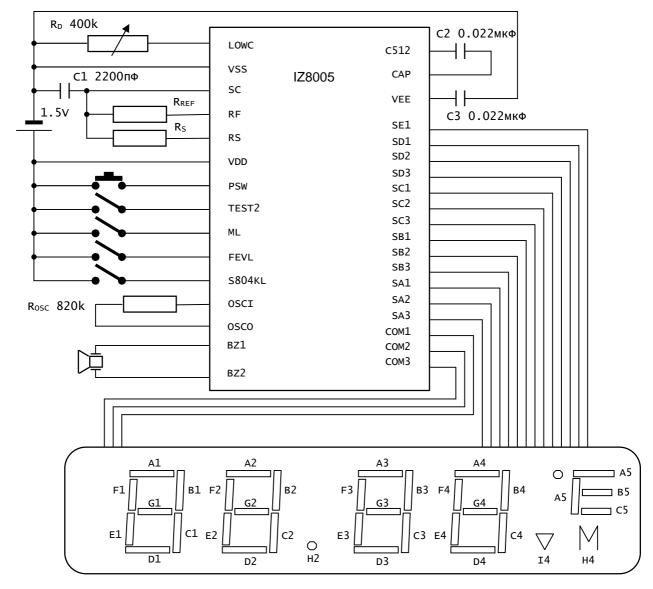

Если температура не увеличивается в течении 8 секунд, то измерения приостанавливаются, на ЖКИ остается измеренное значение температуры, сегмент «°С» при этом прекращает мигать. Микросхема генерирует звуковой сигнал длительностью 4 секунды.

После окончания звука, запускается отсчет времени для авто-выключения и возобновляется измерение температуры. При этом, сегмент «°С» не мигает,

показания ЖКИ — не меняются. Но если измеренная температура превысит значение, зафиксированное на ЖКИ, то символ «°С» начнет мигать, показания ЖКИ изменятся, счетчик авто-выключения перезапустится. ИС будет измерять температуру и ожидать её спада в течении 8 секунд.

Если вывод FEVL микросхемы подключен к +1.5В, т.е. активирована функция «Высокая температура», то в зависимости от значения измеренной температуры, звуки, генерируемые микросхемой — разного типа. Кроме того, частота "заполнения" звукового сигнала — 8 или 4 кГц, может выбираться подключением вывода S804KL к напряжению +1.5В.

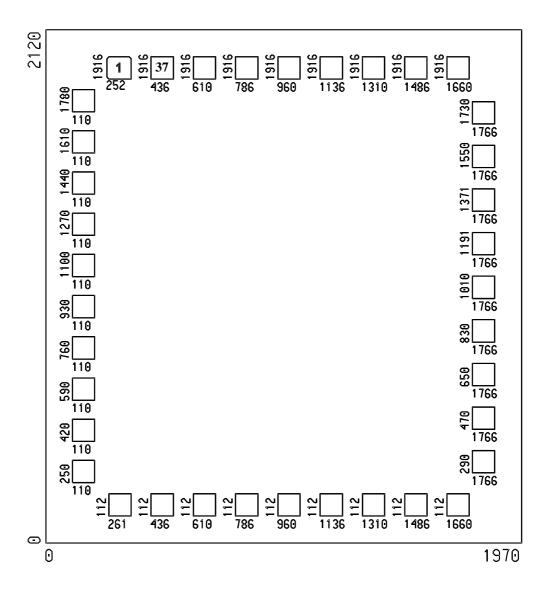
T > 37.5°C



В любой момент времени, термометр можно выключить кратковременным подключением вывода PSW через внешнюю кнопку к напряжению +1,5В. Кроме того, термометр автоматически выключится через 8 минут 40 секунд после обнаружения максимального значения измерянной температуры. Ток потребления в режиме "выключено" составляет менее 1 мкА.

Если напряжение питания м/с IZ8005 станет менее 1.35В, то на ЖКИ включится и начнет мигать с частой 1 Гц сегмент «В» – индикатор разряда батареи. При таком напряжении питания, точность измерения температуры – ухудшается.

Микросхема IZ8005 может быть переведена в диагностический режим, подключением вывода TEST2 к напряжению +1,5В. При этом, термометр будет измерять и отображать на ЖКИ текущее значение температуры. Показания термометра могут увеличиваться и уменьшаться, в соответствие с температурой окружающей среды.


Схема применения ІZ8005

 R_{S} – терморезистор 503ET ф. "Semitec"

 R_{REF} — образцовый резистор с сопротивлением 29,540кОм $\pm 0.2\%$, равным типовому сопротивлению датчика 503ET при температуре 37.00°C

План кристалла IZ8005

Размер кристалла: 1.97 x 2.12 mm Подложка кристалла должна быть соединена с цепью VDD.

Назначение выводов IZ8005

Номер КП	Обозначение	Тип	Назначение вывода
1	SA1	Out	Сегменты ЖКИ
2	SA2	Out	Сегменты ЖКИ
3	SA3	Out	Сегменты ЖКИ
4	SB1	Out	Сегменты ЖКИ
5	SB2	Out	Сегменты ЖКИ
6	SB3	Out	Сегменты ЖКИ
7	SC1	Out	Сегменты ЖКИ
8	SC2	Out	Сегменты ЖКИ
9	SC3	Out	Сегменты ЖКИ
10	SD1	Out	Сегменты ЖКИ
11	SD2	Out	Сегменты ЖКИ
12	SD3	Out	Сегменты ЖКИ
13	SE1	Out	Сегмент ЖКИ
14	VEE	Out	Вывод отрицательного напряжения питания (–1.5В)
15	CAP	Out	Вывод удвоителя напряжения
16	C512	Out	Вывод удвоителя напряжения
17	TV	Bi	Тестовый вывод
18	TEST1	In	Тестовый вывод
19	LOWC	Bi	Вывод детектора напряжения питания
20	VSS	In	Отрицательный вывод источника питания (0В)
21	SC	In	Вывод генератора термодатчика
22	RF	Bi	Вывод генератора термодатчика
23	RS	Bi	Вывод генератора термодатчика
24	VDD	In	Положительный вывод источника питания (+1.5В)
25	PSW	In	Вход управления
26	TEST2	In	Тестовый вывод
27	EXT_INIT	In	Вход общего сброса
28	ML	In	Вывод активизации функции «Память»
29	FEVL	In	Вывод активизации функции «Высокая температура»
30	S804KL	In	Вход выбора частоты звукового сигнала
31	OSCI	In	Вход тактового генератора
32	OSCO	Out	Выход тактового генератора
33	BZ1	Out	Звуковой выход
34	BZ2	Out	Звуковой выход
35	COM1	Out	Общие выводы ЖКИ
36	COM2	Out	Общие выводы ЖКИ
37	COM3	Out	Общие выводы ЖКИ