Quad 2-Input Data Selector/Multiplexer with 3-State Outputs

 High-Speed Silicon-Gate CMOSThe IN74AC257 is identical in pinout to the LS/ALS257, HC/HCT257. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LS/ALS outputs.

This device selects a (4-bit) nibble from either the A or B inputs as determined by the Select input. The nibble is presented at the outputs in noninverted from when the Output Enable pin is at a low level. A high level on the Output Enable pin switches the outputs into the high-impedance state.

- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: $1.0 \mu \mathrm{~A} ; 0.1 \mu \mathrm{~A} @ 25^{\circ} \mathrm{C}$
- High Noise Immunity Characteristic of CMOS Devices
- Output Source/Sink 24 mA

LOGIC DIAGRAM

PIN $16=V_{\text {cc }}$
PIN $8=$ GND

ORDERING INFORMATION IN74AC257N Plastic IN74AC257D SOIC
$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $85^{\circ} \mathrm{C}$ for all packages

PIN ASSIGNMENT

FUNCTION TABLE

Inputs		Outputs
Output Enable	Select	
H	X	Z
L	L	A0-A3
L	H	B0-B3

$\mathrm{X}=$ don't care
$\mathrm{Z}=$ high-impedance state
$\mathrm{A} 0-\mathrm{A} 3, \mathrm{~B} 0-\mathrm{B} 3=$ the levels of the respective
Nibble Inputs

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
Vcc	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
Vin	DC Input Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\text {cc }}+0.5$	V
Vout	DC Output Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\text {cc }}+0.5$	V
IIN	DC Input Current, per Pin	± 20	mA
Iout	DC Output Sink/Source Current, per Pin	± 50	mA
Icc	DC Supply Current, VCc and GND Pins	± 50	mA
P_{D}	Power Dissipation in Still Air, Plastic DIP+ SOIC Package +	$\begin{aligned} & 750 \\ & 500 \end{aligned}$	mW
Tstg	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
TL	Lead Temperature, 1 mm from Case for 10 Seconds (Plastic DIP or SOIC Package)	260	${ }^{\circ} \mathrm{C}$

*Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the Recommended Operating Conditions.

+ Derating - Plastic DIP: - $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
SOIC Package: : $-7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
Vcc	DC Supply Voltage (Referenced to GND)	2.0	6.0	V
Vin, Vout	DC Input Voltage, Output Voltage (Referenced to GND)	0	V CC	V
TJ	Junction Temperature (PDIP)		140	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {A }}$	Operating Temperature, All Package Types	-40	+85	${ }^{\circ} \mathrm{C}$
Ioн	Output Current - High		-24	mA
IoL	Output Current - Low		24	mA
tr, $\mathrm{tf}^{\text {f }}$	Input Rise and Fall Time * $\mathrm{V}_{\mathrm{Cc}}=3.0 \mathrm{~V}$ (except Schmitt Inputs) $\mathrm{V}_{\mathrm{Cc}}=4.5 \mathrm{~V}$ $\mathrm{VCC}_{\mathrm{Cc}}=5.5 \mathrm{~V}$	0 0 0	$\begin{gathered} \hline 150 \\ 40 \\ 25 \\ \hline \end{gathered}$	ns / V

* $V_{\text {IN }}$ from 30% to $70 \% V_{\text {CC }}$

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, Vin and Vout should be constrained to the range GND \leq ($\mathrm{V}_{\text {IN }}$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\text {cc }}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or Vcc). Unused outputs must be left open.

DC ELECTRICAL CHARACTERISTICS(Voltages Referenced to GND)

Symbol	Parameter	Test Conditions	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}} \\ \mathrm{~V} \end{gathered}$	Guaranteed Limits		Unit
				$25^{\circ} \mathrm{C}$	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to } \\ 85^{\circ} \mathrm{C} \end{gathered}$	
V_{IH}	Minimum HighLevel Input Voltage	Vout $=0.1 \mathrm{~V}$ or $\mathrm{V}_{\text {cc }}-0.1 \mathrm{~V}$	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 2.1 \\ 3.15 \\ 3.85 \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.1 \\ 3.15 \\ 3.85 \\ \hline \end{gathered}$	V
VIL	Maximum Low Level Input Voltage	Vout $=0.1 \mathrm{~V}$ or $\mathrm{V}_{\text {cc }}-0.1 \mathrm{~V}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} \hline 0.9 \\ 1.35 \\ 1.65 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.9 \\ 1.35 \\ 1.65 \\ \hline \end{gathered}$	V
Vон	Minimum High- Level Output Voltage	Iout $\leq-50 \mu \mathrm{~A}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 4.4 \\ & 5.4 \end{aligned}$	V
		$\begin{aligned} & { }^{*} \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{IoH}=-12 \mathrm{~mA} \\ & \mathrm{IoH}=-24 \mathrm{~mA} \\ & \mathrm{IoH}=-24 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.56 \\ & 3.86 \\ & 4.86 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.46 \\ & 3.76 \\ & 4.76 \end{aligned}$	
VoL	Maximum Low- Level Output Voltage	Iout $\leq 50 \mu \mathrm{~A}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V
		$\begin{aligned} & { }^{*} \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{IoL}=12 \mathrm{~mA} \\ & \mathrm{IoL}=24 \mathrm{~mA} \\ & \mathrm{IoL}=24 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.36 \\ & 0.36 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \\ & 0.44 \\ & \hline \end{aligned}$	
IIN	Maximum Input Leakage Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND	5.5	± 0.1	± 1.0	$\mu \mathrm{A}$
Ioz	Maximum ThreeState Leakage Current	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}}(\mathrm{OE})=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \text { Vout } \mathrm{V}_{\text {Cc }} \text { or GND } \\ & \hline \end{aligned}$	5.5	± 0.5	± 5.0	$\mu \mathrm{A}$
IoLD	+Minimum Dynamic Output Current	Vold $=1.65 \mathrm{~V}$ Max	5.5		75	mA
Iohd	+ Minimum Dynamic Output Current	Vohd $=3.85 \mathrm{~V}$ Min	5.5		-75	mA
ICC	Maximum Quiescent Supply Current (per Package)	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND	5.5	8.0	80	$\mu \mathrm{A}$

[^0]AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\right.$, Input $\left.\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}\right)$

Symbol	Parameter	$\begin{gathered} \hline \mathrm{VCC}^{*} \\ \mathrm{~V} \end{gathered}$	Guaranteed Limits				Unit
			$25^{\circ} \mathrm{C}$		$\begin{gathered} -40^{\circ} \mathrm{C} \text { to } \\ 85^{\circ} \mathrm{C} \end{gathered}$		
			Min	Max	Min	Max	
tply	Propagation Delay, Nibble A or B to Output Y (Figure 1)	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.0 \\ & \hline \end{aligned}$	ns
tpHL	Propagation Delay, Nibble A or B to Output Y (Figure 1)	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.0 \end{aligned}$	ns
tple	Propagation Delay, Select to Output Y (Figure 2)	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{gathered} 10.5 \\ 7.5 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{gathered} 11.5 \\ 8.5 \end{gathered}$	ns
tphl	Propagation Delay, Select to Output Y (Figure 2)	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{gathered} 10.5 \\ 7.5 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{gathered} 11.5 \\ 8.5 \end{gathered}$	ns
tpzH	Propagation Delay, Output Enable to Output Y (Figure 3)	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} 10.5 \\ 8.5 \end{gathered}$	ns
tpzl	Propagation Delay, Output Enable to Output Y (Figure 3)	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{gathered} 10.0 \\ 9.5 \end{gathered}$	ns
tphz	Propagation Delay, Output Enable to Output Y (Figure 3)	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.0 \end{gathered}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.0 \\ & 10.0 \end{aligned}$	ns
tpLz	Propagation Delay, Output Enable to Output Y (Figure 3)	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{gathered} 10.0 \\ 9.0 \\ \hline \end{gathered}$	ns
Cin	Maximum Input Capacitance	5.0	4.5		4.5		pF

		Typical @25 ${ }^{\circ} \mathrm{C}, \mathrm{V} \mathrm{cc}=5.0 \mathrm{~V}$	
C_{PD}	Power Dissipation Capacitance	50	pF

*Voltage Range 3.3 V is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
Voltage Range 5.0 V is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$

Figure 1. Switching Waveforms

Figure 2. Switching Waveforms

Figure 3. Switching Waveforms

EXPANDED LOGIC DIAGRAM

[^0]: *All outputs loaded; thresholds on input associated with output under test.
 +Maximum test duration 2.0 ms , one output loaded at a time.
 Note: In and Icc @ 3.0 V are guaranteed to be less than or equal to the respective limit @ 5.5 V Vcc

