Octal 3-State Noninverting Bus Transceiver

These octal bus transceiver are designed for asynchronous twoway communication between data buses. The control function implementation minimized external timing requirements.

The device allows data transmission from the A bus to the B bus or from the B bus to the A bus depending upon the logic level at the directional control (DIR) input. The enable input(E) can be used to disable the device so that the buses are effectively isolated.

- Bidirectional Bus Transceiver in a High-Density 20-Pin Package
- 3-state Outputs Dirve Bus Lines Directly
- P-N-P Inputs D-C Loading on Bus Lines
- Hysteresis at Bus Inputs Improve Noise Margins
- Typical Propagation Delay Times; Port to Port ... 8 ns

LOGIC DIAGRAM

PIN $20=$ Vcc
PIN $10=$ GND

PIN ASSIGNMENT

DIRECTION $1 \bullet$	20	V_{CC}
A1 2	19	OUTPUT ENABLE
A2 3	18	B1
A3 4	17	B2
A4 5	16	B3
A5 6	15	B4
A6 7	14	B5
A7 8	13	B6
A8 9	12	B7
GND 10	11	B8

FUNCTION TABLE

Control Inputs		Operation
Output Enable	Direction	
L	L	Data Transmitted from Bus B to Bus A
L	H	Data Transmitted from Bus A to Bus B
H	X	Buses Isolated (High Impedance State)

$$
\mathrm{X}=\text { don't care }
$$

IN74LS245

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V $_{\text {CC }}$	Supply Voltage	7.0	V
Vin $^{\text {IN }}$	Input Voltage	7.0	V
Vout	Output Voltage	5.5	V
Tstg	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

*Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the Recommended Operating Conditions.
RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V $_{\text {CC }}$	Supply Voltage	4.75	5.25	V
$\mathrm{~V}_{\text {IH }}$	High Level Input Voltage	2.0		V
$\mathrm{~V}_{\text {IL }}$	Low Level Input Voltage		0.8	V
Ioн $^{\text {IoL }}$	High Level Output Current	Low Level Output Current		-15
$\mathrm{~T}_{\mathrm{A}}$	Ambient Temperature Range		24	mA

DC ELECTRICAL CHARACTERISTICS over full operating conditions

Symbol	Parameter		Test Conditions	Guaranteed Limit		Unit	
			Min	Max			
VIK	Input Clamp Voltage			$\mathrm{V}_{\text {cc }}=\mathrm{min}, \mathrm{IIN}=-18 \mathrm{~mA}$		-1.5	V
Voh	High Level Output Voltage		$\mathrm{V}_{\text {CC }}=\mathrm{min}$, Іон $=-1.0 \mathrm{~mA}$	2.7		V	
			$\mathrm{V}_{\text {cc }}=\mathrm{min}$, Іон $=-3.0 \mathrm{~mA}$	2.4			
			$\mathrm{V}_{\text {CC }}=\mathrm{min}$, Іон $=-15 \mathrm{~mA}$	2.0			
VoL	Low Level Output Voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{min}$, $\mathrm{IoL}=12 \mathrm{~mA}$		0.4	V	
			$\mathrm{V}_{\mathrm{CC}}=\mathrm{min}$, Iol $=24 \mathrm{~mA}$		0.5		
	Hysteresis		$\mathrm{V}_{\mathrm{CC}}=\min$	0.2		V $\mu \mathrm{A}$	
Iozh	Output Off Current HIGH		$\mathrm{V}_{\text {cc }}=\max , \mathrm{V}_{\text {out }}=2.7 \mathrm{~V}$		20		
Iozl	Output Off Current LOW		$\mathrm{V}_{\text {cc }}=\max , \mathrm{V}_{\text {out }}=0.4 \mathrm{~V}$		-0.2	mA	
IH	High Level Input Current		$\mathrm{V}_{\text {CC }}=$ max, $\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$		20	$\mu \mathrm{A}$	
			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\max , \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V} \\ & (\mathrm{~A} \text { or } \mathrm{B}) \end{aligned}$		0.1	mA	
			$\mathrm{V}_{\mathrm{Cc}}=\max , \mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$ for Pin1, Pin 19		0.1		
IIL	Low Level Input Current		$\mathrm{V}_{\mathrm{CC}}=$ max, $\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		-0.2	mA	
Io	Output Short Circuit Current		$\begin{aligned} & \text { V } \mathrm{CC}=\max , \mathrm{Vo}_{\mathrm{o}}=0 \mathrm{~V} \\ & (\text { Note } 1) \end{aligned}$	-40	-225	mA	
Icc	Supply Current	Outputs High Outputs Low All outputs disable	$\mathrm{V}_{\mathrm{CC}}=\max$ Outputs open		70	mA	
					90		
					95		

[^0] exceed one second.

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=15 \mathrm{~ns}\right.$, $\mathrm{tf}_{\mathrm{f}}=6.0 \mathrm{~ns}$)

Symbol	Parameter	Test Condition	Min	Max	Unit
tple	Propagation Delay Time, Low-to-High Level Output (from A or B to Output)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$		12	ns
tphL	Propagation Delay Time, High-to-Low Level Output (from A or B to Output)			12	ns
tpzh	Output Enable Time to High Level (from OE to Output)			40	ns
tpzL	Output Enable Time to Low Level (from OE to Output)			40	ns
tphz	Output Disable Time from High Level (from OE to Output)	$\begin{aligned} & \mathrm{CL}=5 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$		25	ns
tplz	Output Disable Time from Low Level (from OE to Output)			25	ns

Figure 1. Switching Waveforms (See Figure 3)
tpzL - S1 closed, S2 opened tpzh- S1 opened, S2 closed
tplz, tphz - S1 and S2 closed
Figure 2. Switching Waveforms
(See Figure 4)

NOTES A. C_{L} includes probe and jig capacitance.
B. All diodes are 1N916 or 1N3064.

NOTES A. C_{L} includes probe and jig capacitance.
B. All diodes are 1 N 916 or 1 N 3064 .

Figure 3. Test Circuit
Figure 4. Test Circuit

EXPANDED LOGIC DIAGRAM

[^0]: Note 1: Not more thanone output should be shorted at a time, and duration of the short-circuit should not

