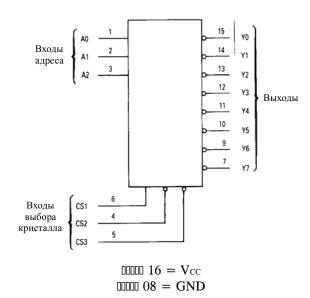
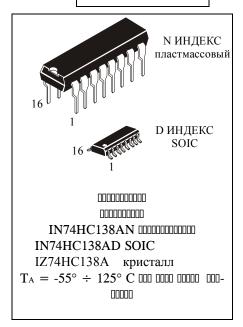
Дешифратор-демультиплексор 3-8 с инверсией на выходе

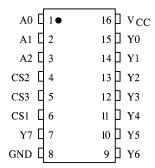
Микросхемы IN74HC138A по назначению выводов совместимы с микросхемами серий LS/ALS138. Входные уровни напряжений совместимы со стандартными К-МОП уровнями.


Микросхема IN74HC138A декодирует трехразрядный адрес в один из 8 выходов, устанавливая на нем низкий потенциал.

Устройство содержит три входа выборки, два активно низких и один активно высокий, обеспечивающие управление, демультиплексирование, последовательное включение и выборку кристалла.


Функция демультиплексирования осуществляется выборкой одного выхода, соответствующего коду на адресных входах; один их входов выборки используется как вход данных, пока другие входы удерживаются в их активном состоянии.

- Выходные уровни напряжений совместимы с входными уровнями К-МОП, N-МОП и ТТЛ микросхем
- Диапазон напряжения питания от 2.0 до 6.0 В
- Низкий входной ток 1.0 мкА
- Высокая помехоустойчивость КМОП приборов


УСЛОВНОЕ ГРАФИЧЕСКОЕ ОБОЗНАЧЕНИЕ

IN74HC138A

НАЗНАЧЕНИЕ ВЫВОДОВ

ТАБЛИЦА ИСТИННОСТИ

Bxo	ды	Выходы		
CS1 CS2 CS3	A2 A1 A0	Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7		
X X H X H X L X X	$\begin{array}{cccc} X & X & X \\ X & X & X \\ X & X & X \end{array}$	H H H H H H H H H H H H H H H H H H H H		
H L L H L L H L L H L L	L L L L L H L H L L H H	L H H H H H H H H L H H H H H H H H L H H H H		
H L L H L L H L L H L L	H L L H L H H H L H H H	H H H H L H H H H H H H H L H H H H H H		

Н = высокий уровень напряжения

L = низкий уровень напряжения

X = любой уровень напряжения (Н или L)

ПРЕДЕЛЬНЫЕ РЕЖИМЫ*

Обознач. параметра	Наименование параметра	Норма, не более	Един. измерен.
V _{CC}	Напряжение питания (относительно GND)	-0.5 ÷ +7.0	В
V _{IN}	Входное напряжение (относительно GND)	$-1.5 \div V_{CC} + 1.5$	В
V_{OUT}	Выходное напряжение (относительно GND)	$-0.5 \div V_{CC} + 0.5$	В
I _{IN}	Входной ток по выводу	±20	мА
I_{OUT}	Выходной ток по выводу	±25	мА
I_{CC}	Ток потребления	±50	мА
P_{D}	Мощность рассеивания при свободном обмене воздуха, пластмассовый DIP^{**} SOIC^{**}	750 500	мВт
Tstg	Температура хранения	-65 ÷ +150	°C
$T_{ m L}$	Допустимая температура вывода на расстоянии 1 мм от корпуса в течении 10 с	260	°C

^{*}Превышение предельных режимов может привести к катастрофическому отказу микросхемы. Рабочие режимы должны соответствовать предельно допустимым режимам, приведенным ниже.

ПРЕДЕЛЬНО ДОПУСТИМЫЕ РЕЖИМЫ

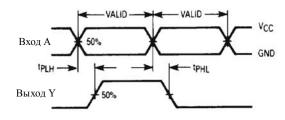
Обознач.	Наименование параметра		рма	Един.
параметра		Не ме- нее	Не более	измерен.
V_{CC}	Напряжение питания (относительно GND)	2.0	6.0	В
V_{IN}, V_{OUT}	Входное напряжение, выходное напряжение (относительно GND)	0	V _{CC}	В
$T_{\mathbf{A}}$	Температура хранения для всех видов корпусов	-55	+125	°C
t_r , t_f	Время фронта нарастания и время фронта V_{CC} =2.0 В спада сигнала (Рисунок 1-3) V_{CC} =4.5 В V_{CC} =6.0 В	0 0 0	1000 500 400	нс

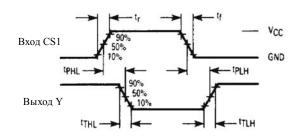
Микросхема содержит схемное решение по ее защите от статического электричества и электронных полей. В связи с этим она должна использоваться в тех схемах применения, в которых нет больших входных воздействий по напряжению. Для правильного использования напряжения V_{IN} и V_{OUT} должны быть в диапазоне $\text{GND} \leq (V_{\text{IN}}$ или $V_{\text{OUT}}) \leq V_{\text{CC}}$.

Неиспользуемые входы должны всегда привязываться к соответствующему логическому уровню напряжения (например GND или V_{CC}). Неиспользуемые выходы должны быть оставлены незадействованными.

^{**} При эксплуатации в диапазоне температур $65^{\circ} \div 125^{\circ}$ С значение мощности рассеивания снижается для пластмассового DIP корпуса на 10 мВт/ $^{\circ}$ С, для SOIC - на 7 мВт/ $^{\circ}$ С

СТАТИЧЕСКИЕ ПАРАМЕТРЫ (Напряжение относительно GND)

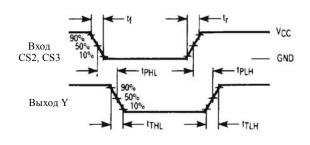

Обознач.	Наименование	Режим измерения	V _{CC}		Норма		Един.
параметра	параметра		В	25 °C ÷ -55°C	≤85 °C	≤125 °C	измер.
V _{IH}	Минимальное входное напряже- ние высокого уровня	V_{OUT} =0.1В или V_{CC} -0.1 В $\mid I_{OUT} \mid \leq 20 \; \text{мкA}$	2.0 4.5 6.0	1.5 3.15 4.2	1.5 3.15 4.2	1.5 3.15 4.2	В
$V_{\rm IL}$	Максимальное входное напряжение низкого уровня	V_{OUT} =0.1 В или V_{CC} -0.1 В $\mid I_{OUT} \mid \leq 20 \; \text{мкA}$	2.0 4.5 6.0	0.5 1.35 1.8	0.5 1.35 1.8	0.5 1.35 1.8	В
$ m V_{OH}$	Минимальное вы- ходное напряже- ние высокого уровня	$egin{aligned} V_{\text{IN}} = & V_{\text{IH}} \ \text{или} \ V_{\text{IL}} \ & I_{\text{OUT}} \ & \leq 20 \ \text{мкA} \end{aligned}$	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	В
		$egin{aligned} & V_{\text{IN}} = V_{\text{IH}} \text{ или } V_{\text{IL}} \ & I_{\text{OUT}} & \leq 4.0 \text{ мA} \ & I_{\text{OUT}} & \leq 5.2 \text{ мA} \end{aligned}$	4.5 6.0	3.98 5.48	3.84 5.34	3.7 5.2	
$ m V_{OL}$	Максимальное выходное напряжение низкого уровня	$egin{aligned} V_{\text{IN}} = V_{\text{IH}} \ \text{или} \ V_{\text{IL}} \ \ I_{\text{OUT}} \ \leq 20 \ \text{мкA} \end{aligned}$	2.0 4.5 6.0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	В
		$egin{aligned} & V_{\mathrm{IN}} = V_{\mathrm{IH}} \ \text{или} \ V_{\mathrm{IL}} \ & I_{\mathrm{OUT}} \ \leq 4.0 \ \text{мA} \ & I_{\mathrm{OUT}} \ \leq 5.2 \ \text{мA} \end{aligned}$	4.5 6.0	0.26 0.26	0.33 0.33	0.4 0.4	
I_{IN}	Максимальный входной ток высокого/низкого уровня	V _{IN} =V _{CC} или GND	6.0	±0.1	±1.0	±1.0	мкА
I_{CC}	Максимальный ток потребления	V _{IN} =V _{CC} или GND I _{OUT} =0 мкА	6.0	4.0	40	160	мкА



ДИНАМИЧЕСКИЕ ПАРАМЕТРЫ ($C_L = 50\pi\Phi$, $t_r = t_f = 6.0$ нс)

Обознач.	Наименование параметра	V_{CC}	Норма		Един.	
параметра		В	25 °C ÷ -55°C	≤85 °C	≤125 °C	измер.
tplh, tphl	Максимальное время задержки распространения при включении/выключении по входам А	2.0 4.5 6.0	135 27 23	170 34 29	205 41 35	00
t рlн, t рнl	Максимальное время задержки распространения при включении/выключении по входу CS1	2.0 4.5 6.0	110 22 19	140 28 24	165 33 28	00
tplh, tphl	Максимальное время задержки распространения при включении/выключении по входам CS2,CS3	2.0 4.5 6.0	120 24 20	150 30 26	180 36 31	00
ttlh, tthl	Максимальное время перехода при включении/выключении	2.0 4.5 6.0	75 15 13	95 19 16	110 22 19	00
Cin	Максимальная входная емкость	6.0	10	10	10	00

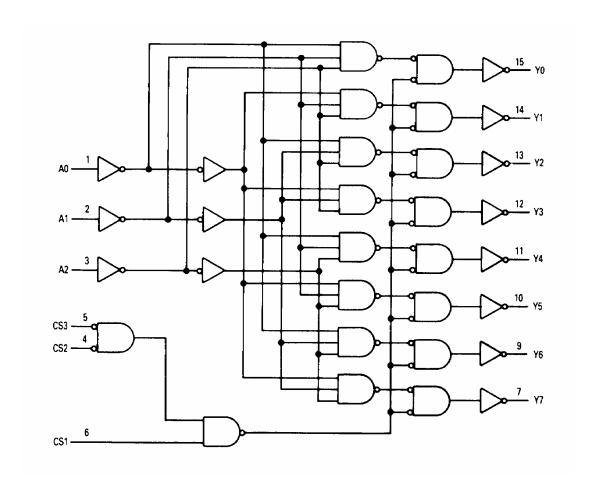
	00000000000 0000000 (для одного разрешенного выхода)	T=25°C,Vcc=5.0 [
CPD	$P_D = C_{PD}V_{CC}^2 f + I_{CC}V_{CC}$	55 (типовое значение)	00

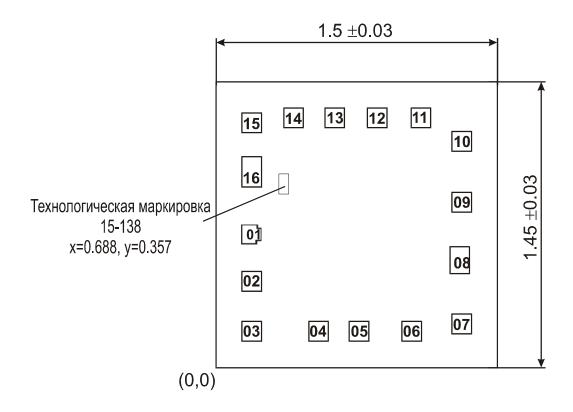


000000 1. 00000000 00000000

0000000 2.000000000 000000000

Контрольная точка




000000 3. 00000000 00000000

000000 4. Схема включения при измерении

Дополнительная логическая диаграмма

ПЛАН КРИСТАЛЛА ІZ74НС138А

Размер контактных площадок указан по слою "пассивация" Толщина кристалла $0,46\pm0,02$ мм

РАСПОЛОЖЕНИЕ КОНТАКТНЫХ ПЛОЩАДОК

, , ,								
Номер контактной	Обозначение	Коор	Размер контакт-					
площадки		(левый ниж	(левый нижний угол), мм					
		X	Y					
01	A0	0.161	0.609	0.106x0.106				
02	A1	0.161	0.36	0.106x0.106				
03	A2	0.15	0.165	0.106x0.106				
04	CS2	0.479	0.165	0.106x0.106				
05	CS3	0.661	0.165	0.106x0.106				
06	CS1	0.99	0.165	0.106x0.106				
07	Y7	1.261	0.196	0.106x0.106				
08	GND	1.261	0.51	0.106x0.173				
09	Y6	1.26	0.793	0.106x0.106				
10	Y5	1.26	1.133	0.106x0.106				
11	Y4	1.034	1.202	0.106x0.106				
12	Y3	0.85	1.202	0.106x0.106				
13	Y2	0.665	1.202	0.106x0.106				
14	Y1	0.481	1.202	0.106x0.106				
15	Y0	0.162	1.172	0.106x0.106				
16	Vcc	0.17	0.863	0.106x0.221				

